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Abstract. We present a complete classification, at the classical level, of the observables of topological
Yang–Mills theories with an extended shift supersymmetry of N generators, in any space-time dimension.
The observables are defined as the Yang–Mills BRST cohomology classes of shift supersymmetry invariants.
These cohomology classes turn out to be solutions of an N -extension of Witten’s equivariant cohomology.
This work generalizes results known in the case of shift supersymmetry with a single generator.

1 Introduction

The prototype for topological theories of Witten’s type
is the four dimensional topological Yang–Mills theory of
Witten [1–3], whose quantum observables are the Don-
aldson invariants [1, 4]. This model is characterized by a
shift invariance, or “shift supersymmetry”, generated by
a single scalar fermionic charge, which is interpreted as
the BRST invariance describing the non-physical charac-
ter of the connection, with the result that only global “ob-
servables”, namely the Donaldson invariants, are present.
Generalizations to supersymmetry (SUSY) with N = 2
or more generators were already proposed some years ago
in [5–7] and more recently in [8–11]. The construction of
Lagrangian models for the gauge fixing of the shift super-
symmetries may be found in [6] and, for arbitrary N and
arbitrary space-time dimension, in [10, 11]. Most of these
constructions are based on a superspace formalism for shift-
SUSY introduced first in [12]. There, gauge invariance is
formulated in terms of superfields. The Faddeev–Popov
ghosts being superfields, supergauge invariance represents
invariances with respect to a supermultiplet of local sym-
metries. However all these local invariances, except the
original gauge invariance, may be fixed algebraically in a
manner very similar to the Wess–Zumino (WZ) gauge fix-
ing of the usual supersymmetric gauge theories [13]. The
equivalence of the superspace theory and of the original
one, e.g. that of Witten in the N = 1 case, is made explicit
in this WZ-like gauge [6, 10,14].
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The problem of the characterization of the observables
of such theories was defined by Witten [1,15] as the com-
putation of “equivariant cohomology”, i.e. the cohomology
of the shift-SUSY generator in the space of the gauge in-
variant local functionals of the fields. It was shown in [14]
that this problem is almost equivalent to the presumably
more tractable one of calculating, in the superspace for-
malism, the cohomology of the BRST operator associated
with superspace gauge invariance, in the space of shift-
SUSY invariant local functionals. In fact, this equivalence
is exact up to solutions which are obviously trivial in the
sense of Witten’s equivariant cohomology.

Our purpose is to characterize, for general N and gen-
eral space-time dimension, and in a formal classical set-up,
all the observables defined as solutions of the BRST co-
homology for SUSY invariant objects. We will also show
that these solutions – up to some of them which turn out
to be obviously trivial – are equivalent to solutions of an
equivariant cohomology, defined in the WZ-gauge as a gen-
eralization of the N = 1 definition of Witten.

Section 2 presents an introduction to the superspace
formalism, with superfields, superforms, supergauge invari-
ance, superconnection, superghosts and BRST symmetry.
The WZ-gauge fixing is recalled in Sect. 3, where also a gen-
eralized definition of equivariant cohomology is proposed.
The problem of finding the observables and its solution
are explained in Sect. 4. In Sect. 5, we write down the gen-
eral result in the WZ-gauge, show that the integrands of
the observables obey a set of generalized Witten’s descent
equations and that they are non-trivial in the sense of
equivariant cohomology. Our conclusions are presented in
Sect. 6. Superspace conventions and notation are given in
Appendix A. Some useful propositions on the relative coho-
mologies of a general set of n coboundary operators, needed
in the main text, are stated and proved in Appendix B.
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Appendix C contains the proof of another proposition of
a more technical character. The WZ-gauge is recalled in
Appendix D, where a one-to-one correspondence between
the fields in this gauge and a set of covariant superfields
is constructed.

This paper may be viewed as a continuation of both
papers [14] and [10], the first reference dealing with the
problem of the observables in the case N = 1, and the
second one presenting an introduction to the superspace
formalism forN > 1 and the reduction to the Wess–Zumino
gauge. Preliminary results of the present work were pre-
sented in [11].

2 N -extended supersymmetry

“Shift supersymmetry” may describe the gauge fixing of
gauge field configurations with null curvature, or alterna-
tively with self-dual curvature. It appeared originally in the
Donaldson–Witten model [1, 4], with one supersymmetry
generator in four dimensional space-time. Generalizations
of it for more than one supersymmetry generator and for
any space-time dimension were described in [6, 10, 12, 14],
where the superspace formalism has been developed. The
purpose of this section is to review the formalism and fix
the notation.

2.1 N superspace formalism

N supersymmetry is generated by the fermionic charges
QI , I = 1, . . . , N obeying the Abelian superalgebra1

[QI , QJ ] = 0, (2.1)

commuting with the space-time symmetry generators and
the gauge group generators. The gauge group is some com-
pact Lie group.

A representation of supersymmetry is provided by su-
perspace, a supermanifold withD bosonic andN fermionic
dimensions2. The respective coordinates are denoted by
(xµ, µ = 0, . . . , D − 1), and (θI , I = 1, . . . , N). A super-
field is by definition a superspace function F (x, θ) which
transforms as

QIF (x, θ) = ∂IF (x, θ) ≡ ∂

∂θI
F (x, θ) (2.2)

under an infinitesimal supersymmetry transformation.
An expansion in the coordinates θI of a generic super-

field reads

F (x, θ) = f(x) +
N∑

n=1

1
n!
θI1 . . . θInfI1...In(x), (2.3)

1 The bracket is here an anticommutator. Throughout this
paper brackets will denote either commutators or anticommu-
tators, according to the statistics of their arguments.

2 Notation and conventions on superspace are given in Ap-
pendix A.

where the space-time fields fI1...In
(x) are completely anti-

symmetric in the indices I1 . . . In. We recall that all fields
(and superfields) are Lie algebra valued. These fields and
superfields may be generalized to p-forms and superfield
p-forms:

Ωp(x, θ) = ωp(x) +
N∑

n=1

1
n!
θI1 . . . θInωp, I1...In

(x). (2.4)

In (2.3) or (2.4), the components n ≥ 1 are SUSY trans-
forms of the lowest component. This may be viewed ex-
plicitly through the identity

Ωp(x, θ) = exp{θIQI}ωp(x) (2.5)

=
N∑

n=0

1
n!
θI1 . . . θIn QIn

. . . QI1 ωp(x),

which holds due to the easily checked superfield property
∂IΩp = QIΩp and the fact that a superfield is uniquely
determined by its θ = 0 component.

We shall also deal with superforms. A q-superform may
be written as

Ω̂q =
q∑

k=0

Ωq−k; I1...Ik
dθI1 . . . dθIk , (2.6)

where the coefficients Ωq−k; I1...Ik
are (Lie algebra valued)

superfields which are space-time forms of degree (q − k).
They are completely symmetric in their indices since, the
coordinates θ being anticommutative, the differentials dθI

are commutative. The superspace exterior derivative is de-
fined as

d̂ = d+ dθI∂I , d = dxµ∂µ, (2.7)

and is nilpotent: d̂ 2 = 0.
The basic superfield of the theory is the superconnection

Â, a 1-superform:

Â = A+ EIdθ
I , (2.8)

with A = Aµ(x, θ)dxµ a 1-form superfield and EI =
EI(x, θ) a 0-form superfield. The superghost C(x, θ) is
a 0-superform. We expand the components of the super-
connection (2.8) as

A = a(x) +
N∑

n=1

1
n!
θI1 . . . θInaI1...In

(x), (2.9)

where the 1-form a is the gauge connection, and the 1-forms
aI1...In

its supersymmetric partners. The expansions of EI

and of the ghost superfield C read

EI = eI(x) +
N∑

n=1

1
n!
θI1 . . . θIneII1...In(x),

C = c(x) +
N∑

n=1

1
n!
θI1 . . . θIncI1...In(x). (2.10)
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The infinitesimal supergauge transformations of the super-
connection are expressed as the nilpotent BRST transfor-
mations

SÂ = −d̂C − [C, Â], SC = −C2, S2 = 0. (2.11)

In terms of component superfields we have

SA = −dC − [C,A], SEI = −∂IC − [C,EI ],

SC = −C2. (2.12)

The supercurvature

F̂ = d̂Â+ Â2 = FA + ΨI dθ
I + ΦIJ dθ

IdθJ (2.13)

transforms covariantly:

SF̂ = −[C, F̂ ],

as well as its components

FA = dA+A2, ΨI = ∂IA+DAEI ,

ΦIJ =
1
2

(∂IEJ + ∂JEI + [EI , EJ ]) , (2.14)

where the covariant derivative with respect to the connec-
tion A is defined by DA(·) = d(·) + [A, (·)]

Special cases, N = 1, 2 and a discussion of the WZ-
gauge can be found in [10].

3 Observables as equivariant cocycles

As discussed in [10] and recalled in Appendix D, it is possi-
ble to suppress all the supergauge degrees of freedom except
the usual one corresponding to the θ = 0 component c of the
superghost C. This is the so-called “WZ-gauge fixing”, ob-
tained by fixing to zero a set of field components as in (D.1).
In the WZ-gauge the supersymmetry generators must be
modified into new operators Q̃I , see (D.5)) differing from
the previous ones, QI , by a field dependent gauge transfor-
mation. Accordingly, the algebra of the supercharges Q̃I

closes up to field dependent gauge transformations as in
(D.7).

A possible generalization for any N of Witten’s equiv-
ariant cohomology [1] may be defined as follows, in the
WZ-gauge.
(1) An “equivariant cocycle” is a gauge invariant local field
polynomial – integrated or not – obeying the conditions

Q̃I∆ = 0, I = 1, . . . , N. (3.1)

(2) A “trivial cocycle” is an equivariant cocycle of the form

∆ = Q̃1 . . . Q̃N∆
′, (3.2)

where ∆′ is gauge invariant.
(3) The “N -equivariant cohomology” is the set of equiva-
lence classes of equivariant cocycles corresponding to the
equivalence relation

∆1 ≈ ∆2 ⇔ ∆1 −∆2 is trivial. (3.3)

This suggests the following generalization of Witten’s def-
inition.

Definition 1. An “observable” is an element of theN -equiv-
ariant cohomology.

Remark. In the superspace formalism, a SUSY invariant
has necessarily the form of a total SUSY variation ∆ =
Q1 . . . QN∆

′, as stated in Corollary 1 of Proposition B.43.

4 Observables
as supersymmetric BRST cocycles

4.1 Defining the problem

Computing the equivariant cohomology defined in the pre-
ceding section is presumably a difficult task. Instead of
this, we shall generalize to arbitrary N the approach made
in [14] for the case N = 1, defining observables, in the su-
perspace formalism, as elements of the BRST cohomology
in the space of the SUSY invariant space-time integrals of
local field polynomials. Our task is thus to define and find
global observables, of the form

K∆(d) =
∫

Md

Kω0
d, (4.1)

an integral of a p-form on a manifold Md of dimension
d. The labels of a form Sωg

p are defined as follows. S is
a N component vector, with components (s1, s2, . . . , sN )
equal to the (non-negative) SUSY numbers, p is the (non-
negative) form degree and g is the (non-negative) ghost-
number.

The observable (4.1) has by definition to satisfy the
BRST cocycle condition:

S K∆d = 0, K∆d �= S K∆′
d, (4.2)

K∆(d) and K∆′
(d) being submitted to the SUSY constraints

QI
K∆d = 0, QI

K∆′
d = 0, I = 1, 2, . . . , N. (4.3)

4.2 General solution of the SUSY constraints

We shall solve (4.3) for K∆d, the solution for K∆′
d being

analogous. From (4.3) we obtain the following equations
for the integrand defined in (4.1):

QI
(k1,...kI ,...kN )ω0

d + d (k1,...,kI+1,...kN )ω0
d−1 = 0,

I = 1, 2, . . . , N. (4.4)

3 The cohomology defined here should not be confused with
that of the nilpotent operator Q =

∑
I εIQI or Q̃ =

∑
I εIQ̃I ,

where the εI are commuting constant supersymmetry ghosts.
The latter may be used in matters such as perturbative renor-
malization; see e.g. [16, 17] in the context of supersymmetric
gauge theories.
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Using Proposition B.4, we conclude that the general solu-
tion is given by

Kω0
d = Q1 . . . QN

K−Eω0
d + d Kϕ0

d−1, (4.5)

whereE is theN dimensional vectorE = (1, 1, . . . , 1). From
the identity (2.5) obeyed by any superfield and the fact
that a product of more than N operators QI is identically
vanishing, we see that we can replace the form K−Eω0

d in
(4.5) by the superfield form

K−EΩ0
d(x, θ) = exp{θIQI} K−Eω0

d(x), (4.6)

and thus we can write (4.5) as

Kω0
d(x) = Q1 . . . QN

K−EΩ0
d(x, θ) + d Kϕ0

d−1, (4.7)

and write (4.1) as a superspace integral4:

K∆d =
∫
S K−EΩ0

d(x, θ). (4.8)

4.3 General solution of the BRST cocycle condition

The BRST invariance condition (4.2) yields, for the inte-
grand of (4.1),

S H+Eω0
d + dH+Eω1

d−1 = 0,

for some form H+Eω1
d−1. From our previous result (4.7),

this can be rewritten as

S Q1 . . . QN
HΩ0

d + d H+Eω1
d−1 = 0. (4.9)

For convenience we have redefined the SUSY numbers by
puttingH = (h1, . . . , hN ) = K−E = (k1 −1, . . . , kN −1).
Let us show that the second term in the latter equation
can also be written as a total SUSY variation. Applying
QI to this equation we obtain

dQI
H+Eω1

d−1 = 0, I = 1, . . . , N ;

hence, due to the triviality of the cohomology of d in the
space of local field functionals [18]:

QI
H+Eω1

d−1 = d(. . .), I = 1, . . . , N.

Application of Proposition B.4 with δi = QI and δn = d
then yields

H+Eω1
d−1 = Q1 . . . QN

K−EΩ1
d−1(x, θ) + d(. . .),

and (4.9) takes the form

Q1 . . . QN

(
S HΩ0

d + d HΩ1
d−1
)

= 0. (4.10)

Now, application of Proposition B.2 gives

S HΩ0
d + d HΩ1

d−1 +
∑

I

QI
H−EIΩ1

d = 0. (4.11)

4 See the definition given by (A.2) in Appendix A.

We shall show now that we can generate from the latter
equation a complete set of “multi-descent equations” – a
generalization of the notion of descent equations to the
case of more than two antiderivative operators, which are
here the operators S, d, Q1, . . ., QN . In order to do this,
it is convenient to work with “truncated superforms” [14],
a special case of the “truncated extended forms” intro-
duced in Appendix C. We define a truncated superform of
degree q by

Ω̌q =
[
Ω̂q

]
(tr), (4.12)

where Ω̂q is a q-superform as defined by (2.6), which we
may write as5

Ω̂q =
q∑

k=0

|S|=k∑
S

SΩq−k (dθ)S (4.13)

≡
q∑

k=0

s1+...+sN=k∑
s1,...,sN

(s1,...,sN )Ωq−k (dθ1)s1 . . . (dθN )sN ,

and where truncation, labeled by the exponent “ (tr)”,
means discarding, in the expansion (4.13), all the terms
of degree q − k > d, sI > hI (I = 1, . . . , IN ). Explicitly6

we have

Ω̌q =
q∑

k=Max{0,q−d}

S≤H, |S|=k∑
S

SΩq−k (dθ)S , (4.14)

where S ≤ H means sI ≤ hI , ∀I. We shall denote by Ě(d,H)
the space of truncated superforms defined by (4.12) and
(4.14).

The exterior derivative ď acting in the space Ě(d,H) is
defined, according to (C.3), by

ď Ω̌q =
[
d̂Ω̌q

]
(tr)

=
q∑

k=Max{0,q+1−d}

S≤H, |S|=k∑
S

d SΩq−k (dθ)S (4.15)

+
N∑

I=1

 q∑
k=Max{0,q−d}

S≤H−EI , |S|=k∑
S

∂I
SΩq−kdθ

I(dθ)S

 .

As shown in Appendix C, ď is nilpotent. Proposition C.1
may be restated as follows.

Lemma 4.1 The cohomology of ď in the space Ě(d,H) con-
sists of the truncated superforms of maximal weights:

Ω̌D =H Ωd(dθ)H , D ≡ d+ |H|. (4.16)

5 The second summation in (4.12) is performed over all non-
negative values of the SUSY numbers sI , constrained by |S| = k,
where |S| ≡ ∑N

I=1 sI .
6 Recall that all numbers such as form degree, SUSY number

and ghost-number, are non-negative. As a general convention,
any term which may appear with negative such numbers is
understood to vanish.
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One checks easily that (4.11) may be written in terms of
truncated superforms:

SΩ̌0
D + ď Ω̌1

D−1 = 0, (4.17)

whereD = d+|H|, and the upper index as usual denotes the
ghost-number. The two truncated superforms appearing in
this equation are

Ω̌0
D = HΩ0

d, (4.18)

Ω̌1
D−1 = HΩ1

d−1(dθ)
H +

N∑
I=1

H−EIΩ1
d(dθ)H−EI .

Applying ď to (4.17), we obtain

ďSΩ̌1
D−1 = 0,

which, due to the triviality of the cohomology of ď , solves in

SΩ̌1
D−1 + ď Ω̌2

D−2.

Repeating the argument we finally obtain the (S, ď )
descent equations

SΩ̌g
D−g + ď Ω̌g+1

D−g−1, g = 0, . . . , D. (4.19)

These are the “multi-descent equations” which characterize
the observable (4.1), of dimension d and SUSY weight
H + E. These equations read explicitly7

S SΩg
p + d SΩg+1

p−1 +
N∑

I=1

QI
S−EI Ωg+1

p = 0, (4.20)

g = D − p− |S|, sI = 0, . . . , hI , p = 0, . . . , d,

where S = (s1, . . . , sN ), H = (h1, . . . , hN ), |S| =
∑N

1 sI ,
|H| =

∑N
1 hI and D = d+ |H|.

4.4 Solving the multi-descent equations

4.4.1 Cohomology of S

With the purpose of resolving the multi-descent equations
(4.19), our first task will be to resolve the cohomology of the
BRST operator S in the space ES of the local polynomials in
the superfield forms of the theory and of their derivatives,
and then in the space Ě(d,H) of the truncated superforms
(4.12). An obvious algebraic basis of ES is given by the set
of superfields (2.9)–(2.10) and their derivatives:

{A, EI , C, A, I1...In
, EI, I1...In

, C, I1...In
, dA, dEI , dC,

dA, I1...In , dEI, I1...In , dC, I1...In ; n ≥ 1} , (4.21)

where we use the notation X, I1...In = ∂I1 . . . ∂In
X for the

θ-derivatives.
7 For the case of one SUSY generator [14] they are called

bi-descent equations.

A more convenient basis is one that consists of BRST
doublet superfields and of covariant superfields. The BRST
doublets are identified as(

E
(A)
I1...In

, K
(A)
I1...In

)
, n ≥ 1, (4.22)

where the E(A) are the completely antisymmetrized θ-
derivatives of EI , and the K(A) are their BRST variations:

E
(A)
I1...In

= E[I1, I2...In], K
(A)
I1...In

= SE(A)
I1...In

,

SK(A)
I1...In

= 0.

The remainder of the basis is givenby the set of covariant
superfields constructed in Appendix D and shown in (D.8).
A complete algebraic basis is thus provided by{

E
(A)
I1...In

, K
(A)
I1...In

, dE
(A)
I1...In

, dK
(A)
I1...In

; n ≥ 1
}

⊕ {
A, C, FA, dC, Ψ

(A)
I1...In

(n ≥ 1), Φ(M)
I1...In

(n ≥ 2),

DAΨ
(A)
I1...In

(n ≥ 1), DAΦ
(M)
I1...In

(n ≥ 2)
}
. (4.23)

A first obvious conclusion is that the fields E(A)
I1...In

and

K
(A)
I1...In

and their derivatives do not contribute to the coho-
mology of S, since they are BRST doublets [17]. Moreover,
the fields Ψ (A)

I1...In
and Φ

(M)
I1...In

can be viewed as “matter”
fields, transforming in the adjoint representation of the
gauge group. Then, as a consequence of the general results
of [18], we can conclude that the cohomology of S in the
space ES consists of the local polynomials generated by
the cocycles

θr(C) (r = 1, . . . , rank G) (4.24)

and

P inv(F, Ψ (A)
I1...In

, Φ
(M)
I1...In

, DAΨ
(A)
I1...In

, DAΦ
(M)
I1...In

), (4.25)

where P inv(. . .) is any gauge invariant polynomial of its
arguments, and where θr is the ghost cocycle associated
in a standard way [18] to the rth Casimir operator of the
gauge group G and given, as a function of the superghost
C, by

θr(C) = (−1)mr−1 mr! (mr − 1)!
gr!

TrCgr

( gr = 2mr − 1 , r = 1, . . . , rank G ), (4.26)

where the index r labels the rth Casimir operator of the
structure group (gauge group) G, whose degree is denoted
by mr. An obvious generalization of the results of [18]
shows that the cocycles (4.26) are related by superdescent

equations involving superforms
[
θ̂r

]gr−p

p
of form degree

p ≥ 0 and ghost-number gr − p:

S
[
θ̂r

]gr−p

p
+ d̂

[
θ̂r

]gr−p+1

p−1
= 0 ( p = 0, . . . , gr ), (4.27)



232 C.P. Constantinidis et al.: Observables in topological Yang–Mills theories with extended shift supersymmetry

with
[
θ̂r

]gr

0
= θr(C) and d̂

[
θ̂r

]0
gr

= fr(F̂ ), where

fr(F̂ ) = Tr F̂mr ( r = 1, . . . , rank G ), (4.28)

F̂ = d̂Â+ Â2 being the supercurvature (2.13). According

to the last one of (4.27), the “bottom” superform
[
θ̂r

]0
gr

is the Chern–Simons superform of degree gr associated to
the rth Casimir operator.

A straightforward generalization of the result (4.24)–
(4.25) from superfield forms to truncated superforms yields
the following lemma.

Lemma 4.2 The cohomology of S in the functional space
Ě(d,H) is given by the truncated forms whose non-vanishing
coefficients are polynomials in the superfield forms given
in (4.25).

4.4.2 Cohomology of S modulo ď

The resolution of the cohomology of S modulo ď in the
space Ě(d,H) of truncated superforms, i.e. the resolution
of the multi-descent equations (4.19) has been done in
Appendix A.4 of [14] for the caseN = 1. The computation,
relying on the cohomologies of ď and S in Ě(d,H) (Lemmas
4.1 and 4.2), applies as well to arbitrary N , thus leading
to the following proposition.

Proposition 4.3 The general solution of the multi-descent
equations (4.19) corresponding to the observable (4.1) is
generated, at ghost-number zero, by two classes of solutions.
The first one is given by the superfield forms (recall that
H = K − E) Solution of Type I:

HΩ0
d (dθ)H =

[[
θ̂r1

]0
gr1

fr2(F̂ ) . . . frL
(F̂ )
]

S=H, p=d

with

|H| + d = D, D = 2
L∑

i=1

mri − 1, L ≥ 1, (4.29)

where the Chern–Simons superform
[
θ̂r

]0
gr

and supercur-

vature invariant fr(F̂ ) are defined by (4.26)–(4.28).
The second class of solutions depends on the superfield

forms F , Ψ and Φ(M) appearing in the cohomology of S
(see (4.25)) and it is given by Solution of Type II:

HΩ0
d = HZ0

d

(
F, Ψ

(A)
I1...In

, Φ
(M)
I1...In

, DAΨ
(A)
I1...In

, DAΦ
(M)
I1...In

)
,

(4.30)
Here, HZ0

d is an arbitrary invariant polynomial of its
arguments, which has a form degree d and SUSY-numbers
given by H, and which is non-trivial in the sense that

HZ0
d �= dHΦ0

d−1 +
N∑

I=1

QI
H−EIΦ0

d.

Let us make two remarks.
(1) As in the N = 1 case [14] the superspace integral (see
(4.8)) of any solution of the type (4.30):

K∆d =
∫
S K−EZ0

d ,

which belongs to the BRST cohomology in the space of
the SUSY invariant BRST cocycles, is in fact trivial from
the point of view of the equivariant cohomology defined in
Sect. 3. Indeed, being the space-time integral of a super-
field form

Kω0
d = − 1

N !
Q1 . . . QN

K−EZ0
d ,

where K−EZ0
d is gauge invariant, it reduces in the WZ-

gauge to an equivariantly trivial expression:∫
Md

Kω0
d = − 1

N !
Q̃1 . . . Q̃N

∫
Md

K−Ez0
d,

where K−Ez0
d is gauge invariant.

This follows from the fact that the operators QI and
Q̃I coincide, when applied to gauge invariant expressions,
as seen from (D.5).
(2) As we shall see in Sect. 5, solutions of the type (4.29)
are not trivial from the point of view of the equivariant
cohomology. In the case N = 1 [14] they are the Witten–
Donaldson observables [1]. The cases N > 1 thus offer a
generalization of the latter ones.

4.5 Superform expression of the observables

Let us consider the untruncated version of (4.19) involving
full superforms (see (2.6)):

SΩ̂g
D−g + d̂Ω̂g+1

D−g−1,

g = 0, . . . , D

(D = |H| + d).

(4.31)

It can be shown [14] on the basis of the results of [18] con-
cerning BRST cohomology that the general solution of the
superdescent equations (4.31), which contains superforms
down to and including ghost-number g = 0, is given by

Ω̂
gr1−p

D−gr1+p =
[
θ̂r1

]gr1−p

p
fr2(F̂ ) . . . frL

(F̂ ),

p = 0, . . . , gr1 , (4.32)

with the
[
θ̂r1

]gr1−p

p
and the supercurvature invariant fr(F̂ )

defined by (4.26)–(4.28). The superfield components SΩg
p ,

with |S| + g+ p = D, of these superforms are clearly solu-
tions of the multi-descent equations (4.19) since the latter
is a subsystem of (4.31). The corresponding observables
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are given by the superspace integrals of the superfield com-
ponents of the expansion

Ω̂0
D =

[
θ̂r1

]0
gr1

fr2(F̂ ) . . . frL
(F̂ )

≡
|H|≤D∑

H

HΩ0
D−|H| (dθ)

H , (4.33)

i.e. (see (4.1) and (4.8))

K∆d =
∫
S HΩ0

d,

d = D − |H|,

K = H + (1, . . . , 1).

(4.34)

On the other hand,we see from (4.33) takenwith all possible
values of D and of the numbers gri that the components of
the solutions of the superdescent equations (4.31) span all
the solutions of type I (4.29) of the multi-descent equations
(4.19). Thus we have the following.

Proposition 4.4 If Ω̂0
D represents the general solution of

the superdescent equations (4.31), then the superfield forms
HΩ0

D−|H| definedby the expansion of Ω̂0
D in (4.33) represent

the general solution of type (4.29) of the multi-descent
equations (4.19).

We note for the sake of completeness that the superforms
Ω̂

gr1−p

D−gr1+p obey the system of superdescent equations

SΩ̂gr1−p

D−gr1+p + d̂Ω̂
gr1−p+1
D−gr1+p−1, p = 0, . . . , gr1 ,

involving ghost-numbers up to the value gr1 , which is less
than the maximum possible value D if L > 2.

A convenient way of representing the observables (4.34)
and deducing interesting properties of them, is based on the

identity d̂
[
θ̂r1

]0
gr1

= fr1(F̂ ) for the Chern–Simons form,

and the expansion

d̂Ω̂0
D = fr1(F̂ ) . . . frL

(F̂ ) (4.35)

= fr1(F ) . . . frL
(F ) +

1≤|S|≤D+1∑
S

SW 0
D+1−|S|(dθ)

S ,

with the first term being a d-derivative, and

SW 0
D+1−|S| =

N∑
I=1

QI
S−EIΩ0

D+1−|S| + d SΩ0
D−|S|. (4.36)

Integrating both sides of the latter equation in superspace,
we see that we can write (4.34) as

K∆d =
∫
S HΩ0

d (4.37)

= (−1)N−J

∫
Md

Q1 . . . Q̂J . . . QN
H+EJW 0

d ,

with H = K − E, d = D − |H| = D + N − K, where
the notation X̂ means suppression of the factor X. The
value of J in the right-hand side is arbitrary. Let us show
that the expression is in fact independent of J as it should.
Applying the nilpotent operator d̂ on (4.35) we obtain the
descent equations

N∑
I=1

QI
H−EIW 0

D+2−|H| + d HW 0
D+1−|H| = 0,

1 ≤ |H| ≤ D + 1,

N∑
I=1

QI
H−EIW 0

0 = 0, |H| = D + 2. (4.38)

Considering the difference of the expressions (4.37) ob-
tained for two values of J , which we may choose without
loss of generality asJ =N andN−1, respectively, we obtain∫

Md

Q1 . . . QN−2

(
QN−1

H′−EN−1W 0
d +QN

H′−ENW 0
d

)
,

H ′ = H + EN + EN−1,

which, by virtue of (4.38) for |H| = D + 2 − d, reads

−
∫

Md

Q1 . . . QN−2

N−2∑
I=1

QI
H′−EIW 0

d = 0,

and which vanishes due to the nilpotency of the opera-
tors QI .

5 Witten’s observables and descent equations

Let us rewrite the integral (4.37), expressing a generic
observable, as a space-time integral:

K∆d =
∫

Md

Kωd, (5.1)

the integrand being defined up to a total space-time deriva-
tive. Let us define the latter as

Kωd =
N∑

J=1

(−1)N−JαJ Q1 . . . Q̂J . . . QN
H+EJW 0

d

∣∣∣∣∣
θ=0

,

(5.2)

with
∑

J αJ = 1. It is clear from the discussion at the end
of the last subsection that, to the contrary of its integrand,
the integral does not depend on the arbitrary numbers
α. Calculating

QI
Kωd = (−1)N−1αI Q1 . . . QN

H+EIW 0
d

and
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d K+EIωd−1

=
N∑

J=1

(−1)J−1αJ Q1 . . . Q̂J . . . QN d H+EJ+EIW 0
d−1

∣∣∣∣∣
θ=0

= (−1)NαI Q1 . . . QN
H+EIW 0

d ,

where we have used (4.38) for the last equality, we conclude
that the integrands (5.2) obey the descent equations

QI
Kωd + αI d

K+EIωd−1 = 0,

I = 1, . . . , N, N ≤ |K| ≤ D − d+N. (5.3)

We can now go to the WZ-gauge (see Appendix D). The
forms Kωd being gauge invariant functions of the covariant
superfields (D.8) taken at θ = 0, they reduce to correspon-
dent gauge invariant functions of the covariant WZ-gauge
fields (D.2) by virtue of the correspondence (D.10). More-
over, since the expressions are gauge invariant, the appli-
cations of the generators Q̃I and QI are identical. Hence,
(5.3) reduce to

Q̃I
Kωd + αI d

K+EIωd−1 = 0,

I = 1, . . . , N, N ≤ |K| ≤ D − d+N, (5.4)

which are the possible generalizations to arbitrary N of
Witten’s descent equations [1].

Specializing to two particular values of the set of num-
bers αI , we would obtain

Q̃I
Kωd +

1
N
d K+EIωd−1 = 0

(
αI =

1
N

)
,

Q̃J
Kωd + d K+EJωd−1 = 0

Q̃I
Kωd = 0, I �= J

}
(αJ = 1 , αI = 0 , I �= J). (5.5)

Let us recall that in all systems of equations above, any
termwith negative SUSYnumber or formdegree is assumed
to vanish.

Equations (5.4) show that our solutions, which solve
Witten’s descent equations, are indeed Witten’s observ-
ables, their space-time integrals being Q̃I -invariant for any
I. It remains to show that they are non-trivial in the sense
defined in Sect. 3. For this it is sufficient to check the non-
triviality of the w’s of highest SUSY numbers (hence of
zero form degree). The latters are Q̃I -invariant, and read
(see e.g. (5.2) for α1 = 1, αI = 0 , I �= 1, and (4.35))

I1J1...InJnw0 = (−1)N−1Q2 . . . QN

× (ΦI1J1
, . . . , ΦInJn

)∣∣
symmetrized in (I1,...,Jn) ,

with n =
∑L

r=1mr, where we use the notation (4.13) and
(X1, . . . , Xn) is a symmetric invariant polynomial of its
arguments. In the WZ-gauge

I1J1...InJnw0 = (−1)N−1Q̃2 . . . Q̃N

× (eMI1J1
, . . . , eMInJn

)∣∣
symmetrized in (I1,...,Jn) ,

with n =
∑L

r=1mr.
It is easy to check that the eMIJ can never be written

as a Q̃1-variation. Hence w0 cannot be written as a full
Q̃1Q̃2 . . . Q̃N -variation and thus belongs to the equivari-
ant cohomology.

6 Conclusion and open problems

The results on the classification of the observables known
for the topological Yang–Mills theories with one supersym-
metry generator were generalized to the case of theories
defined with more supersymmetry generators. We have
obtained a complete classification of the observables ac-
cording to their definition as non-trivial BRST cocycles in
the space of supersymmetry invariant local functionals.

Although our solutions are solutions of the equivari-
ant cohomology problem defined in Sect. 3, we have no
proof that it provides the complete solution of the latter.
However, we have also found generalized Witten’s descent
equations for the integrands of the observables and showed
their non-triviality in the equivariant cohomology sense.

Our results are formal, being established in the classical
approximation. Their interpretation at the quantum level
as topological invariants remains an open problem in the
general case of arbitrary numbers of SUSY generators and
space-time dimensions, although some results are known
for special cases, in particular for N = 2 [6,9].
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discussions. C.P. Constantinidis would like to thank the Abdus
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hospitality during a visit under the Associate Program.

Appendix A:
N -supersymmetry and superspace

(D,N)-superspace bosonic coordinates are denoted by xµ,
µ = 0, . . . , D − 1, the fermionic (Grassmann, or anticom-
muting) coordinates being denoted by θI , I − 1, . . . , N .
The N supersymmetry generators QI are represented on
superfields F (x, θ) by

QIF = ∂IF ≡ ∂

∂θI
F,

where, by definition, ∂Kθ
J = δJ

K . Further conventions and
properties concerning the θ-coordinates are the following:

θN = εI1...IN
θI1 . . . θIN = N ! θ1 . . . θN ,

(∂θ)N = εI1...IN∂I1 . . . ∂IN
= N ! ∂1 . . . ∂N , (A.1)

(∂θ)NθN = −(N !)2,

where εI1...IN is the completely antisymmetric tensor of
rank N , with the conventions

ε1...N = 1, εI1...IN
= (−1)N+1 εI1...IN .
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One may define the conserved supersymmetry number –
theSUSYnumber – attributing the value 1 to the generators
QI , hence−1 to the θ-cordinates.The SUSYnumber of each
field component is then deduced from the SUSY number
given to each superfield.

Superspace integration of a superfield form Ωp(x, θ) is
defined by the integrals∫

S Ωp(x, θ) =
∫

Mp

∫
dNθ Ωp(x, θ), (A.2)

where the x-space integral is made on some p dimensional
(sub)manifold Mp, and the θ-space integral is the Berezin
integral defined by∫

dNθ . . . = − 1
(N !)2

(∂θ)N . . . ,

such that
∫
dNθ θN = 1.

Appendix B:
Some useful propositions

The propositions and proofs presented here are general-
izations of results given in [18]. They hold for both usual
forms and superfield forms.

Definitions and notation. Let ω(s1,...,sn) be forms whose
weights si are associated to n operators δi, (i = 1, . . . , n),
nilpotent and anticommuting, i.e. {δi, δj} = 0. The coho-
mology group of each operator δi is trivial by hypothesis. If
some of the weights si are negative we have, by convention,
ω(s1,...,sn) = 0. We shall use the condensed notation

ω(s1,...,sn) = ωS , S = (s1, . . . , sn), |S| =
n∑

i=1

si,

Ei = (0, . . . , 1, . . . , 0)

(unique non-vanishing component is a 1

at the ith position),

E =
n∑

i=1

Ei = (1, 1, . . . , 1),

S − T = (s1 − t1, . . . , sn − tn)

S ≤ T ⇔ si ≤ ti , i = 1, . . . n. (B.1)

The forms ωS may be fields or superfields. We have

Proposition B.1 Let the set of forms {ωT−Ei | i = 1, . . . , n}
= {ω(t1,...,ti−1,...,tn) | i = 1, . . . , n} satisfy the cocycle con-
dition

n∑
i=1

δi ω
T−Ei = 0. (B.2)

(1) The set {ωT−Ei | i = 1, . . . , n} can be extended to an
extended form ω̃, defined by

ω̃ =
|S|=|T |−1∑

S

ωS , (B.3)

such that

δ̃ ω̃ = 0 ; δ̃ =
n∑

i=1

δi . (B.4)

(2) There exists an extended form

ϕ̃ =
|S|=|T |−2∑

S

ϕS , (B.5)

where ω̃ and ϕ̃ satisfy

ω̃ = δ̃ ϕ̃. (B.6)

Corollary 1 The cohomology of δ̃ is trivial.

Corollary 2 The general solution of (B.2) for any ωT−Ei

is given by

ωT−Ei =
n∑

j=1

δjϕ
T−Ei−Ej , j = 1, . . . , n, (B.7)

where all ϕT−Ei−Ej for i, j = 1, . . . , n are components of
a single extended form ϕ̃.

To proof Proposition B.1, we note the following. We will
proceed by induction from the case n = 2 which will be
first treated explicitly.
Case n = 2. In this case, (B.2) is given by

δ1ω
(t1−1,t2) + δ2ω

(t1,t2−1) = 0. (B.8)

The proof of Part 1 is as follows. Applying δ1 to (B.8)
we obtain δ2δ1ω(t1,t2−1) = 0. Remembering that the coho-
mology of δ2 is trivial, we deduce the existence of a form
ω(t1+1,t2−2), such that

δ1ω
(t1,t2−1) + δ2ω

(t1+1,t2−2) = 0. (B.9)

Repeating successively this procedure we finally get

δ1ω
(|T |−1,0) = 0, |T | = t1 + t2. (B.10)

We have thus obtained the set of equations

δ1ω
(t1+k−1,t2−k) + δ2ω

(t1+k,t2−k−1) = 0, 0 ≤ k ≤ t2.

Applying now δ2 to (B.8) and using the triviality of the
cohomology of δ1, we obtain in an analogous way

δ1ω
(t1−k′−1,t2+k′) + δ2ω

(t1−k′,t2+k′−1) = 0, 0 ≤ k′ ≤ t1.

These last two systems of equations can be put into a
unique set:

δ1ω
(t1+p−1,t2−p) + δ2ω

(t1+p,t2−p−1) = 0,

−t1 ≤ p ≤ t2,
(B.11)

which is exactly (B.4) written in components, correspond-
ing to the extended form and to the extended operator

ω̃ =
t2∑

p=−t1

ω(t1+p−1,t2−p), δ̃ = δ1 + δ2. (B.12)
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The proof of Part 2 is as follows. Equation (B.11) for p =
−t1 is (B.10). From the triviality of the cohomology of δ2
we obtain the general solution

ω(0,|T |−1) = δ2ϕ
(0,|T |−2), (B.13)

and by substituting (B.13) in (B.11) for p = −t1 + 1,
we obtain

δ2

[
−δ1ϕ(0,|T |−2) + ω(1,|T |−2)

]
= 0, (B.14)

whose general solution for ω(1,|T |−2) is

ω(1,|T |−2) = δ1ϕ
(0,|T |−2) + δ2ϕ

(1,|T |−3). (B.15)

The procedure continues until (B.11) for p = t2−1, leading
finally to

ω(t1+p−1,t2−p) = δ1ϕ
(t1+p−2,t2−p) + δ2ϕ

(t1+p−1,t2−p−1),

−t1 + 1 ≤ p ≤ t2, (B.16)

with the last equation, for p = t2, being identically satisfied.
Notice that the set (B.16) can be put in the form (B.6) with

ϕ̃ =
t2∑

p=−t1+2

ϕ(t1+p−2, t2+p). (B.17)

The general case

In order to establish the proof for general nwe suppose that
the proposition is valid for (n− 1). Applying for example
δ1 on (B.2), we get

n∑
i=2

δiδ1ω
(t1,t2,...,ti−1,...,tn) = 0. (B.18)

By the induction hypothesis there exist (n − 1) forms
ω(t1+1,t2−2,t3,...,tn) and ω(t1+1,t2−1,t3,...,ti−1,...,tn), with i =
3, . . . , n, such that

δ1ω
(t1,t2−1,t3,...,tn) + δ2ω

(t1+1,t2−2,t3,...,tn)

+
n∑

i=3

δiω
(t1+1,t2−1,t3,...,ti−1,...,tn) = 0. (B.19)

Repeating the procedure we get

δ1ω
(t1+k−1,t2−k,t3,...,tn) + δ2ω

(t1+k,t2−k−1,t3,...,tn)

+
n∑

i=3

δiω
(t1+k,t2−k,t3,...,ti−1,...,tn) = 0, (B.20)

with 0 ≤ k ≤ t2. Beginning the same procedure from
(B.2), but applying δ2 and considering the cohomology of
δ1, δ3, . . . , δn, we obtain

δ1ω
(t1−k′−1,t2+k′,t3,...,tn) + δ2ω

(t1−k′,t2+k′−1,t3,...,tn)

+
n∑

i=3

δiω
(t1−k′,t2+k′,t3,...,ti−1,...,tn) = 0,

0 ≤ k′ ≤ t1. (B.21)

We can unify the last two set of equations in the follow-
ing one:

δ1ω
(t1+p−1,t2−p,t3,...,tn) + δ2ω

(t1+p,t2−p−1,t3,...,tn)

+
n∑

i=3

δiω
(t1+p,t2−p,t3,...,ti−1,...,tn) = 0,

−t1 ≤ p ≤ t2. (B.22)

Introducing now the 2-extended operator δ̃(1,2) = δ1 + δ2
and the sets of 2-extended forms

ω̃
(t̃,t3,...,ti−1,...,tn)
(1,2) =

s1+s2=t̃∑
s1,s2

ω(s1,s2,t3,...,ti−1,...tn),

i = 3, . . . , n,

ω̃
(h̃−1,t3,...,tn)
(1,2) =

s1+s2=t̃−1∑
s1,s2

ω(s1,s2,t3,...tn), (B.23)

we can rewrite (B.22) as

δ̃(1,2)ω̃
(t̃−1,t3,...,tn)
(1,2) +

n∑
i=3

δiω̃
(t̃,t3,...,ti−1,...,tn)
(1,2) = 0,

t̃ = t1 + t2. (B.24)

Observe that the operator δ̃(1,2) is nilpotent and an-
ticommutes with the others δi. By virtue of Proposition
B.1 already proved for the case n = 2, its cohomology is
trivial. In order to solve (B.24) we make use of Proposition
B.1, true for (n − 1), by assumption, where the (n − 1)
operators are given by {δ̃(1,2), δ3, . . . , δn}. We have thus
the extended form

s̃+s3+...+sn=|T |−1∑
s̃,s3,...,sn

ω̃
(s̃,s3,...,sn)
(1,2) =

s1+...+sn=|T |−1∑
s1,...,sn

ω(s1,...,sn)

≡ ω̃, (B.25)

satisfying (B.2):(
δ̃(1,2) +

n∑
i=3

δi

)
ω̃ = δ̃ ω̃ = 0, δ̃ =

n∑
i=1

δi.

We also know from Part 2 of Proposition B.1 for (n−1)
that there exists an extended form

ϕ̃ =
s̃+s3+...+sn=|T |−2∑

s̃,s3,...,sn

ϕ̃
(s̃,s3,...,sn)
(1,2)

=
s1+...+sn=|T |−2∑

s1,...,sn

ϕs1,...,sn ≡ ϕ̃,
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which satisfies

ω̃ =

(
δ̃(1,2) +

n∑
i=3

δi

)
ϕ̃ ≡ δ̃ ϕ̃. (B.27)

Now we have

Proposition B.2 If the form ω = ωT = ω(t1,...,tn) satisfies

δ1 . . . δn ω = 0, (B.28)

it admits a solution of the type

ω =
n∑

i=1

δi ϕ
T−Ei . (B.29)

The proof of Proposition B.2 is by induction. For the case
n = 1 (B.28) reads δ ω = 0, and from the triviality of the
cohomology of δ the solution is given by

ω = δ ϕ.

For the general case, we can rewrite (B.28) as

(δ1 . . . δn−1)δn ω = 0, (B.30)

and supposing that Proposition B.2 is valid for (n−1), we
can solve (B.30) with respect to δnω, obtaining

δn ω(t1,...,tn−1) =
n−1∑
i=1

δiη
T−Ei . (B.31)

From Proposition B.1 it follows that

ω =
n∑

i=1

δi ϕ
T−Ei . (B.32)

We have

Proposition B.3 If the form ωT = ω(t1,...,tn) satisfies the
following equation:

δ1 . . . δn−1 ω
T + δnψ

T+E1+...+En−1−En = 0, (B.33)

then the general solution for it is given by

ωT =
n∑

i=1

δi ϕ
T−Ei . (B.34)

To proof this we note the following. Applying δn on (B.33)
we have

δ1 . . . δn−1δn ωT = 0,

whose solution is (B.34) by virtue of Proposition B.2.

We have

Proposition B.4 If the form ωT = ω(t1,...,tn) satisfies the
following set of equations:

δi ω
T + δnψ

T+Ei−En
i = 0, i = 1, . . . , n− 1, (B.35)

the general solution is given by

ωT = δ1 . . . δn−1 ϕ
T−E1−...−En−1 + δnη

T−En . (B.36)

We also have the following.

Corollary 1 Let ωT = ω(t1,...,tn), obey the following set
of equations:

δiω
T = 0, i = 1, . . . , n. (B.37)

Then the general solution for (B.37) is

ωT = δ1 . . . δn ϕ
T−E1−...−En . (B.38)

To achieve a proof of Proposition B.4, we write from Propo-
sitionB.1 the solution for the first equation of the set (B.35):

ωT = δ1ϕ
T−E1 + δn(. . .). (B.39)

Substituting it into the second equation of (B.35) we have

δ2δ1ϕ
T−E1 + δn(. . .) = 0. (B.40)

From Proposition B.3 we get the solution for (B.40):

ϕT−E1 = δ1ϕ
T−2E1 + δ2ϕ

T−E1−E2 + δn(. . .). (B.41)

Substituting (B.41) into (B.39) we arrive at

ωT = δ1δ2ϕ
T−E1−E2 + δn(. . .). (B.42)

Repeating the argument we finally obtain the result (B.36).

Appendix C:
Truncated extended forms and cohomology

Let us consider as in Appendix B the forms φR = φ(r1,...,rn),
which may be fields or superfields. The notation and con-
ventions are explained in the beginning of that appendix.
The nilpotent extended operator δ̃ and an extended q-form
of total weight q are defined as

δ̃ =
n∑

i=1

δi, φ̃q =
|R|=q∑

R

φR. (C.1)

Let us define the truncated extended q forms associated to
the highestH = (h1, . . . , hn) (in short: truncated forms) as

φ̌q =
[
φ̃q
] (tr)

=
|R|=q, R≤H∑

R

φR (C.2)

The truncation, indicated by the exponent “ (tr)”, means
discarding in the expression all the forms of degree not
constrained by R ≤ H. The polynomials in these trun-
cated forms and their truncated exterior derivatives span
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the space ĚH , with the exterior multiplication and deriva-
tion rules

φ̌q1
1 φ̌

q2
2 =

[
φ̃q1

1 φ̃
q2
2

] (tr)

, δ̌ φ̌q =
[
δ̃φ̃q
] (tr)

. (C.3)

δ̌ is obviously nilpotent, and the operations defined in (C.3)
map ĚH to ĚH . We have

Proposition C.1 The cohomology of δ̌ in the space ĚH

consists of the highest weight truncated forms

φ̌|H| = φH , φ̌|H| �= δ̌ φ̌|H|−1. (C.4)

Let us remark that a highest weight truncated form φ̌|H|
is always closed: δ̌ φ̌|H| = 0.

The proof of Proposition C.1 is by induction. The result
being obvious for n = 1, we shall prove it for the generic
case n assuming it to hold for n − 1. Let us divide the
weights r1, . . . , rn in two subsets: r1 and R′ = (r2, . . . , rn).
We define accordingly the partially extended operator δ̃′
and the partially extended forms

δ̃′ =
n∑

i=2

δi, φ̃′ (q−r,r) =
|R′|=r∑

R′
φ(q−r,R′), r = 0, . . . , q,

(C.5)
as well as the partially truncated extended forms

φ̌ ′ (q−r,r) =
[
φ̃′ (q−r,r)

] (tr′)

=
|R′|=r, R′≤H′∑

R′
φ(q−r,R′),

r = 0, . . . , q, (C.6)

on which act the partially truncated derivative δ̌′ defined by

δ̌′φ̌ ′ (q−r,r) =
[
δ̃′φ̃′ (q−r,r)

] (tr′)

=
n∑

i=2

|R′|=r, R′≤H′−Ei∑
R′

δiφ
(q−r,R′)

 ,

r = 0, . . . , q. (C.7)

From the induction hipothesis, the cohomology of δ̌′ is
trivial in the subspace of the partially truncated forms
(C.7) restricted by the condition r < h′8.

Let us now solve the cohomology equation:

δ̌ φ̌q = 0. (C.8)

The truncated form (C.2), can be written as

φ̌q =
Min(q,h′)∑

r=Max(0,q−h1)

φ̌ ′ q−r,r. (C.9)

We thus have to examine separately the four cases 0 ≤
q < h1, h1 ≤ q < h′, h′ ≤ |H| < h1, q = |H| = h1 + h′,

�

�

����

�
�

�
�

���

���

���

���

Fig. C.1. Weight diagram for the partially truncated super-
forms φ̌ ′ (r1,r′). The numbers (1), (2), (3) and (4) refer to the
four cases examined in the text

corresponding respectively to the areas (1), (2), (3) and to
the point (4) of Fig. C.1.
Case 1: 0 ≤ q < h1. We have

φ̌q =
q∑

r=0

φ̌ ′ (q−r,r), δ̌ φ̌q =
q∑

r=0

(δ1 + δ̌′)φ̌ ′ (q−r,r).

The cohomology condition (C.8) implies the follow-
ing equations:

δ1φ̌
′ (q,0) = 0,

δ̌′φ̌ ′ (q−r,r) + δ1φ̌
′ (q−r−1,r+1) = 0, r = 1, . . . , q − 1,

δ̌′φ̌ ′ (0,q) = 0.

Solving these equations in turn, beginning from the first
one, we obtain easily, using the triviality of the cohomology
of δ1,

φ̌ ′ (q,0) = δ1ψ̌
′ (q−1,0),

φ̌ ′ (q−r,r) = δ1ψ̌
′ (q−r−1,r) + δ̌′ψ̌ ′ (q−r,r−1),

r = 1, . . . , q − 1,

φ̌ ′ (0,q) = δ̌′ψ̌ ′ (0,q−1).

This result can be rewritten as

φ̌q = δ̌ ψ̌q−1, with ψ̌q−1 =
q−1∑
r=0

ψ̌ ′ (q−1−r,r). (C.10)

We note that for q = 0 we have φ̌0 = φ̌ ′ (0,0) and the
solution is φ̌0 = 0. We have thus proven the triviality of
the cohomology in case 1.

8 We use the notation h′ for |H ′| =
∑n

i=2 hi.
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Case 2: h1 ≤ q < h′. In this case the truncated form is
given by

φ̌q =
q∑

r=q−h1

φ̌ ′ (q−r,r),

and the cohomology condition (C.8) yields

δ̌′φ̌ ′ (h1−r,q−h1+r) + δ1φ̌
′ (h1−r−1,q−h1+r+1) = 0,

r = 0, . . . , h1,

δ̌′φ̌ ′ (0,q) = 0.

This time one has to begin with the last of these equa-
tions, and use the induction hypothesis according to which
the cohomology of δ̌′ is trivial when applied to partial trun-
cated forms (C.6) which are not of maximal weight, i.e such
that r < h′. The solution reads

φ̌ ′ (0,q) = δ̌′ψ̌ ′ (0,q−1),

φ̌ ′ (r,q−r) = δ̌′ψ̌ ′ (r,q−r−1) + δ1ψ̌
′ (r−1,q−r),

r = 1, . . . , h1,

which again may be written as in (C.10), showing the
triviality of the cohomology in case 2.
Case 3: h′ ≤ q < |H|. The truncated form reads

φ̌q =
q−h′∑

r=q−h1

φ̌ ′ (q−r,r),

and the cohomology condition (C.8) yields

δ̌′φ̌ ′ (h1−r,q−h1+r) + δ1φ̌
′ (h1−r−1,q−h1+r+1) = 0,

r = 0, . . . , h1 + h′ − q − 1. (C.11)

The situation is a bit more subtle. We begin from (C.11)
with r = 0, and use the result of Corollary 2 of Proposition
B.1 – valid due to the triviality of the cohomology of both
δ1 and δ̌′ –, from which we can write

φ̌ ′ (h1,q−h1) = δ̌′ψ̌ ′ (h1,q−h1−1) + δ1ψ̌
′ (h1−1,q−h1),

φ̌ ′ (h1−1,q−h1+1) = δ̌′ψ̌ ′ (h1−1,q−h1) + δ1ψ̌
′ (h1−2,q−h1+1).

(C.12)

Now substituting this result in (C.11) for r = 1 and using
the triviality of the cohomology of δ1, we get the first of
the following equations – the one for r = 2 is

φ̌ ′ (h1−r,q−h1+r)

= δ̌′ψ̌ ′ (h1−r,q−h1+r−1) + δ1ψ̌
′ (h1−r−1,q−h1+r),

r = 2, . . . , h1 + h′ − 1, (C.13)

and the remaining ones, for r ≥ 3, are obtained in the usual
way using the triviality of the cohomology of δ1. The result
(C.13) can be rewritten as (C.10), showing the triviality
of the cohomology in case 3.

Case 4: q = |H| = h1+h′ This is the case of highest weight:

φ̌q = φ̌ ′ (h1,h′) = φ(h1,...,hn),

which satisfies identically the cohomology condition (C.8).
It may be the δ̌′-variation of some truncated form ψ̌ ′ |H|−1,
or not. In the latter case it belongs to the cohomology of δ̌′.

Joining together the results of these four cases ends the
proof of Proposition C.1.

Appendix D: Wess–Zumino gauge
and covariant superfields

As shown in [10] it is possible to fix algebraically the gauge
degrees of freedom corresponding to the ghosts cI1...In

(x)
(1 ≤ n ≤ N), through the conditions9

eI(x) = 0, e[II1...In](x) = 0 (1 ≤ n ≤ N). (D.1)

This defines the so-called Wess–Zumino (WZ) gauge, anal-
ogous to the one encountered in the supersymmetric Yang–
Mills theories [13]. We are left with the usual gauge degree
of freedom corresponding to the ghost c(x). The physical
degrees of freedom are labeled by the covariant fields{
Fa, aI1...In , e

(M)
I1...In+1

, DaaI1...In , Dae
(M)
I1...In+1

; n ≥ 1
}
,

(D.2)
where Fa and Da are the Yang–Mills curvature and the
covariant exterior derivative with respect to the connection
a, and e

(M)
I1...In

is the mixed symmetry tensor correspond-
ing to the second Young tableau in the right-hand side of
Fig. D.1, and defined by the expansion

eI1I2...In+1 = e[I1I2...In+1] + e
(M)
I1I2...In+1

,

with

e
(M)
I1I2...In+1

=
1

n+ 1

n+1∑
k=2

(
eI1I2...Ik...In+1 + eIkI2...I1...In+1

)
.

(D.3)
The BRST transformations of the fields (D.2) are covariant:

Sφ = −[c, φ]. (D.4)

The stability of the WZ-gauge choice requires a redef-
inition of the SUSY operators – acting on the fields (D.2)
and a:

Q̃I = QI + δ(λI), (D.5)

�� �

�
�

� � � �

Fig. D.1. Expansion (D.3) of the tensor eI1I2...In

9 The field components of the superfields of the theory are
defined by (2.9) and (2.10).
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where δ(λI) is a supergauge transformation of field depen-
dent parameters

λII1...In =
1
n!n

e
(M)
II1...In

, (D.6)

equivalent to a superfield BRST transformation (2.12) with
the ghost components cI1...In given by (D.6) and with
c = 0 [10]. The superalgebra (2.1) now closes on the
gauge transformations

[Q̃I , Q̃J ] = −2δgauge(e
(M)
IJ ) (D.7)

of the field dependent parameters e(M)
IJ .

Let us now show that there is a bijection between the set
of fields (D.2) and the following set of covariant superfields:{
FA, Ψ

(A)
I1...In

, Φ
(M)
I1...In+1

, DAΨ
(A)
I1...In

, DAΦ
(M)
I1...In+1

; n ≥ 1
}
.

(D.8)
FA andDA are the Yang–Mills curvature and the covariant
exterior derivative with respect to the superfield connec-
tion A, and the remaining elements are defined from the
supercurvature components (2.14) by

Ψ
(A)
I1...In

= Ψ[I1|I2...In], (D.9)

Φ
(M)
I1...In+1

=
n

n+ 1
(
ΦI1[I2|I3...In+1] + ΦI2[I1|I3...In+1]

)
.

The bracket [. . .] means complete antisymmetrization in
the indices, the bar | symbolizes covariant θ-derivations,

ΨI1|I2...In
= DI2 . . . DIn

ΨI1 , DIX = ∂IX + [EI , X],

and the mixed symmetry tensors Φ(M)
I1...In+1

belong to the
expansion of the covariant θ-derivatives ΦI1I2|I3...In+1 in
irreducible representations of the permutation group Sn+1:
they correspond to the Young diagram shown in the right-
hand side of Fig. D.2.

All the objects X in (D.8) are covariant, i.e.

SX = −[C,X].

The bijection between the set (D.2) and the set (D.8) is
simply given by the fact that the elements of the former are
equal to the θ = 0 components of the elements of the latter,
provided the WZ-gauge conditions (D.1) are applied:(
Fa, aI1...In , e

(M)
I1...In+1

, DaaI1...In , Dae
(M)
I1...In+1

)
=(

FA, Ψ
(A)
I1...In

, Φ
(M)
I1...In+1

, DAΨ
(A)
I1...In

, DAΦ
(M)
I1...In+1

)∣∣∣∣
θ=0,WZ

,

�� �

�
�

� �

� � � � � �

Fig. D.2. Expansion of the tensor ΦI1I2|I3...In+1

n ≥ 1. (D.10)

This is obvious for FA. For Ψ (A)
I1...In

, we observe that each θ-
derivative of ΨI brings in factors of θ-derivatives EI,I1,...Ik

or space-time covariant derivatives of them. However, only
completely antisymmetrized derivatives E[I,I1,...Ik] may
contribute as factors to the completely antisymmetric ten-
sor Ψ (A). Since these completely antisymmetrized deriva-
tives vanish at θ = 0 due to the WZ-gauge conditions, we
are left with the simple θ-derivatives of A, which at θ = 0
yield the fields aI1...In

. The same conclusion holds for the
terms DAΨ

(A)
I1...In

.

The argument is similar for the terms Φ(M)
I1...In+1

(and

DAΦ
(M)
I1...In+1

): only factors of completely antisymmetrized
derivatives of EI may contribute to these mixed symmetry
tensors, made from covariant θ-derivatives of the symmetric
tensor ΦI1I2 and symbolized by the diagram shown in the
right-hand side of Fig. D.2. And this same diagram defines
the symmetry properties of e(M)

I1...In+1
.
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